LIS1, CLIP-170's key to the dynein/dynactin pathway.
نویسندگان
چکیده
CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics.
منابع مشابه
Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function
Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 t...
متن کاملConformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150(Glued) are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH(2) terminus of p150(Glued) binds directly to the COOH ter...
متن کاملDynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly.
Bipolar spindle assembly critically depends on the microtubule plus-end-directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition of this antiparallel sliding activity results in the formation of monopolar spindles. Here, we show that upo...
متن کاملQuantitative analysis of Pac1/LIS1-mediated dynein targeting: Implications for regulation of dynein activity in budding yeast.
LIS1 is a critical regulator of dynein function during mitosis and organelle transport. Here, we investigated how Pac1, the budding yeast LIS1 homologue, regulates dynein targeting and activity during nuclear migration. We show that Pac1 and Dyn1 (dynein heavy chain) are dependent upon each other and upon Bik1 (budding yeast CLIP-170 homologue) for plus end localization, whereas Bik1 is indepen...
متن کاملEvidence for a Role of CLIP-170 in the Establishment of Metaphase Chromosome Alignment
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2002